Téléchargement Gratuit ZoneTelechargement

..

Dictionnaire mathematique arabe francais

Telecharger dictionnaire mathematique arabe francais

Aide


Vous devez vous inscrire afin de télécharger
Veuillez créer un compte gratuitement sur Torrent9 pour accéder aux téléchargements illimités et au streaming !

Dans l'histoire des mathématiques, on désigne par les expressions de mathématiques arabes, ou mathématiques islamiques, les contributions apportées par les mathématiciens du monde musulman du début de la conquête jusqu'au milieu du XVe&#;siècle.

Les sciences arabes, et en premier plan, les mathématiques, s'exercent à travers les califats islamiques, établis en Moyen-Orient, en Asie centrale, en Afrique du Nord, dans la péninsule ibérique, et au sud de la France au VIIIe&#;siècle. Les textes sont écrits en arabe, qui était une des langues des sciences et de la culture à cette époque, d'où l'emploi des termes de «&#;sciences arabes&#;» et de «&#;mathématiques arabes&#;», cela sans considération de la langue maternelle des savants et quelles que puissent être leurs origines ethniques ou leur religion.

Les mathématiques arabes se sont constituées par assimilation des mathématiques grecques ou hellénistiques ainsi que des mathématiques indiennes. Elles ont également été influencées par les mathématiques chinoises et babyloniennes avant de connaître un développement propre. C'est principalement par leurs traductions en arabe et leurs commentaires que l'Europe prit connaissance des ouvrages des mathématiciens grecs. De récentes recherches ont démontré que beaucoup d'idées, qu'on pensait nées dans l'Europe du XVIe, XVIIe ou XVIIIe siècle, étaient déjà présentes dans les mathématiques grecques ou furent développées par des mathématiciens arabes, mais certaines n'eurent pas de suite.

Histoire[modifier | modifier le code]

&#;Article connexe&#;: Liste des mathématiciens arabo-musulmans.

L'islam connaît dès sa naissance au VIIe&#;siècle une rapide progression. En un siècle, les territoires musulmans s'étendent d'Espagne jusqu'en Perse[1]. La conquête des territoires contre l'empire byzantin conduit à la prise de Damas, l'invasion de la vallée mésopotamienne et la prise d'Alexandrie en Par ces conquêtes l'empire musulman prend connaissance du savoir grec et indien.

Puis durant un siècle, des luttes internes aboutissent à la création, vers la fin du huitième siècle après la chute des Omeyyades, de trois entités politiques différentes&#;: Abbassides à l'est, Idrissides au Maroc et Omeyyades de Cordoue. Ce schisme explique en particulier l'existence de plusieurs graphies pour les chiffres dit arabes&#;: 0,1,2,3,4,5,6,7,8,9&#;: utilisés à Fès et à Cordoue et ٠,١,٢,٣,٤,٥,٦,٧,٨,٩&#;: utilisés à Bagdad.

Fès, la capitale culturelle et spirituelle du Maroc, abrite Quaraouiyine, l'établissement éducatif considéré de nos jours comme étant le plus ancien dans le monde encore en activité[2].

Bagdad, ville créée par les califes abbassides pour servir de capitale de l'Empire, devient très vite un centre culturel avec notamment la création d'une Maison de la Sagesse sous le règne du calife Al-Mamun (début du IXe&#;siècle). Un grand programme de traduction y est entrepris, d'abord de persan en arabe puis de sanskrit ou de grec en arabe[3]. Les Arabes établissent des contacts avec les Romains byzantins de Constantinople, et les califes arabes achètent les manuscrits grecs notamment les Élémentsd'Euclide (qui seront traduits par Al-Hajjaj[4]) et la Grande composition mathématique de Ptolémée connue sous le nom Almageste qui donne lieu à plusieurs traductions dont celle d'Al-Hajjaj et celle de Thabit ibn Qurra[5]. Deviennent également accessibles et traduits en arabe des ouvrages tels que les Coniques d'Apollonius, De la sphère et du cylindre d'Archimède, l’Arithmeticade Diophante (traduit par Qusta ibn Luqa[6]), le Traité sur les miroirs de Dioclès, les Travaux sur la mécanique de Pappus d'Alexandrie ainsi que les traités de Héron d'Alexandrie. Les mathématiciens arabes traduisent aussi des textes sanskrits d'astronomie et de mathématiques indiennes comme le Surya Siddhanta et le Brahma Sphuta Siddhanta (traduits par Muhammad al-Fazari), le Khandakhayaka de Brahmagupta[7] et l'Aryabhatiya d'Aryabhata.

Parmi les membres de la Maison de la Sagesse, on compte le mathématicien persan Al-Khwarizmi. Deux de ses traités ont eu un impact considérable sur les mathématiques européennes au XIIe&#;siècle. Le premier, dont seule la traduction latine a été conservée, transmet la numération décimale. Le second traité, Kitab fi'l-jabr wa'l-muqabala (Livre sur la restauration et la confrontation) traite de manipulations sur les équations. L'algèbre, nouvelle discipline des mathématiques, continuera de s'épanouir avec la civilisation islamique. On peut également citer les frères Banu Musa et Thābit ibn Qurra (algèbre, traduction de Nicomaque et révision des Éléments d'Euclide, mise en place de méthodes infinitésimales pour le calcul d'aire, astronomie, trigonométrie, théorie des nombres)[8].

Les mathématiques arabes sont particulièrement florissantes durant les Xe et XIe&#;siècles[9], période durant laquelle de nombreux mathématiciens approfondissent les différentes branches des mathématiques&#;: Abu l-Wafa (traducteur, algèbre, arithmétique, trigonométrie, géométrie) , Abu Nasr Mansur (trigonométrie) , Abu Kamil (algèbre), al-Battani (trigonométrie), al-Karaji (algèbre), Ibn al-Hayttam connu sous le nom d'Alhazen (algèbre, géométrie, optique) , Omar Khayyam (algèbre, géométrie) , Sharaf al-Dīn al-Tūsī (algèbre)

Le premier déclin des sciences arabes commence au XIIe&#;siècle à la suite de conflits divisant le monde musulman, mais il existe cependant encore des mathématiciens de renom au-delà de cette période parmi lesquels on peut citer Nasir al-Din al-Tusi au XIIe&#;siècle (géométrie), puis al-Kashi au XVe&#;siècle (arithmétique, algèbre, analyse numérique). Après ce dernier mathématicien, le nombre de contributions aux mathématiques médiévales par des mathématiciens arabes devient négligeable[10]. L'influence d'Algazel sur ce déclin a été présentée comme déterminante par Neil deGrasse Tyson dans sa conférence sur l'âge d'or islamique[11].

Nombre&#;: écriture, calcul, nature[modifier | modifier le code]

Écriture[modifier | modifier le code]

Plusieurs systèmes de numération ont coexisté dans le monde arabe médiéval.

On trouve en effet un système de numération décimal multiplico-additif où les 9 unités, les 9 dizaines, les 9 centaines et le millier sont identifiés par 28 lettres de l'alphabet arabe pris dans un certain ordre, le jummal. Un nombre comme s'écrit alors, à l'aide de cinq lettres, comme 3 fois plus plus 50 plus 4. Ce système de numération semble avoir des sources syriaques, il permet en théorie d'écrire tous les nombres mais semble n'avoir pas été utilisé pour des grands nombres pour lesquels on préfère l'écriture sexagésimale. Ce système de numération est associé à un système de calcul mental appelé calcul digital. Dans ce système de numération il n'existe que 8 types de fractions&#;: 1/2, 1/3, , 1/9, les autres s'exprimant par produit ou somme de fractions de ce type. Les fractions dont le dénominateur comporte un facteur premier différent de 2, 3, 5, 7 sont appelés des fractions sourdes c'est-à-dire inexprimables dont on cherche à fournir une valeur approchée[12].

On trouve également, principalement dans les écrits astronomiques, le système de numération sexagésimal des Babyloniens qui semble atteindre le monde arabe par la voie syriaque ou persane[13].

Un dernier système va remplacer peu à peu les deux précédents. C'est le système décimal positionnel d'origine indienne constitué de neuf chiffres et du zéro. Un des premiers écrits arabes le décrivant est le livre sur le Calcul indien d'al-Khwarizmi dont il ne reste qu'une version latine incomplète[14]. Cet ouvrage présente le système de notation, celui des fractions (fractions indiennes ab&#;c, décimales et sexagésimales) ainsi que les techniques opératoires (addition, soustraction, duplication, division par deux, multiplication, division, racine carrée). Un ouvrage postérieur d'al-Uqlidisi décrit également cette arithmétique et fait une étude comparée des trois arithmétiques (indienne, sexagésimale, digitale). C'est également lui qui perfectionne l'usage de la fraction décimale, utilisant un séparateur pour distinguer la partie entière de la partie décimale[15]. Le calcul indien se répand ensuite dans tout le monde arabe avec des graphies différentes en Occident et en Orient.

Calculs[modifier | modifier le code]

Le calcul digital est un système de calcul mental que l'on trouve dans l'empire byzantin et dans l'empire arabe, probablement issu du monde commercial. Il utilise les articulations des doigts pour stocker des valeurs intermédiaires et porte également le nom d'arithmétique des nœuds (ou hisāb al-'uqūd). Les méthodes sont simples concernant les additions et les soustractions mais elles se compliquent pour les autres opérations. Il a fait l'objet d'écrits dont le plus ancien en langue arabe est celui d'Abu al Wafa al-Buzjani[16] mais disparaît peu à peu avec le développement du calcul indien.

Le calcul indien apporte une amélioration significative en particulier concernant la multiplication, l'addition, et l'extraction de racine carrée. Selon la tradition indienne, les calculs s'effectuaient sur une tablette de sable où les calculs intermédiaires étaient effacés au fur et à mesure. Sous l'impulsion de mathématiciens arabes, ce système est progressivement mais lentement remplacé par des calculs avec encre et papier permettant de conserver et contrôler les résultats intermédiaires[17]. Ainsi la méthode des maisons (ou multiplication par jalousies) est déjà présente dans l'ouvrage d'al-Uqlidisi[18]. Les méthodes d'analyse numérique développées à partir du XIe&#;siècle[19] permettent également de trouver des valeurs approchées de plus en plus précises pour les calculs de racines (carrées, cubiques, etc.). L'astronome et mathématicien perse Al-Kashi a marqué, en calculant 16 décimales de π, une étape dans la succession des records, depuis les 3 décimales calculées par Archimède.

Les livres d'arithmétique présentent également des techniques de calculs des nombres figurés ( nombre polygonaux, nombres pyramidaux), des séries arithmétiques et géométriques, des sommes des carrés, des cubes ou des puissances quatre des premiers entiers. On trouve une partie de ces travaux dans des sources indiennes ou grecques, mais le traitement de ces calculs par Ibn Tahir, l'andalous al-Umawi&#;(en) (XVe&#;siècle) et al-Kashi semble être original et leurs travaux permettent d'en faire un tout cohérent et exploitable[20].

Nature[modifier | modifier le code]

Si l'on appelle nombre l'objet sur lequel se porte le calcul, on peut noter durant ces siècles, une évolution concernant le statut du nombre.

On trouve chez al-Khwarizmi comme chez les auteurs indiens des règles opératoires concernant le zéro mais uniquement en tant que symbole dans la numération décimale[21].

Le nombre négatif est également présent dans les coefficients de polynômes. Cela conduit al-Samaw'al à exposer des règles de signes identiques à celles existant dans les mathématiques indiennes[22] mais le résultat du calcul, ou la solution de l'équation reste dans le domaine des nombres positifs[23].

L'évolution la plus importante se trouve dans le traitement des quantités irrationnelles qui dès le Xe&#;siècle se voient qualifiées de nombre («&#;adad&#;»), le nombre rationnel étant «&#;al-adad al-muntica&#;» et l'irrationnel «al-adad al-summa&#;»[24]. On assiste à une arithmétisation des grandeurs géométriques. Des règles opératoires sont données concernant les irrationnels quadratiques (a ± &#;ba et b sont des rationnels et où b n'est pas le carré d'un rationnel) et biquadratique (racine carrée d'irrationnels quadratiques). Ainsi Abu Kamil donne-t-il la règle opératoire suivante sur la somme de deux irrationnels quadratiques[25]&#;: Ces irrationnels interviennent, ainsi que les nombres négatifs, chez Abu Kamil comme coefficients dans des équations au même titre que les entiers ou les rationnels. Les irrationnels issus de racines cubiques ou de racines n-ièmes, sont calculés de manière approchée et ces approximations sont utilisées dans d'autres calculs pour construire des tables trigonométriques ou approcher π[26]. La question sur la nature des nombres et, en particulier, sur le statut à accorder au quotient de deux grandeurs incommensurables est posée par des mathématiciens du XIe&#;siècle, al-Khayyam et Ibn Muʿādh qui concluent sur son statut de nombre[27].

Algèbre[modifier | modifier le code]

Al-jabr al-muqabala[modifier | modifier le code]

Entre et [28], al-Khwarizmi écrit son traité Kitab al-jabr wa al-muqabala (abrégé du calcul par la restauration et la comparaison) dans lequel il présente les techniques de résolution des équations du premier et second degré. Il commence par définir les objets de son étude&#;: les nombres, l'inconnue (al-shay, la chose), son carré (al-māl, le trésor ou le bien), l'inconnue est aussi désignée comme la racine du bien (jidhr)[29]. Il présente ensuite les six situations canoniques auxquelles on peut se ramener. L'exposé d'al-Khwarizmi est entièrement rhétorique et ne fait appel à aucune écriture symbolique mais ses six situations peuvent se résumer en langage moderne dans ces 6 équations&#;: avec a, b, c des nombres entiers ou rationnels positifs.

Pour chacune d'entre elles, il présente une méthode de résolution dont il démontre la validité par des raisonnements géométriques à l'aide d'aire de rectangles, de carrés et de gnomons. Les solutions ne sont cherchées que dans les nombres positifs[30]. Il étudie la condition d'existence de solutions pour l'équation de type 5 (4ac inférieur à b²) et présente les deux solutions de cette équation quand elles existent[31].

Il montre également comment se ramener à ces six situations canoniques à l'aide de la technique de restauration (ajouter une même quantité aux deux membres de l'égalité pour combler un trou) et de comparaison (supprimer une même quantité présente dans les deux membres de l'équation). Il définit également quelques règles élémentaires de calcul sur des expressions comportant son inconnue par exemple le développement de (a+bx)(c+dx)[32]. Suivent ensuite de nombreux problèmes pratiques de commerce, d'arpentage ou d'héritage[33].

Le sujet n'est pas nouveau. Il existe dans les mathématiques babyloniennes et indiennes des procédures de résolution de problèmes du premier et du second degré. Les termes même d'al-jabr et al-muqabala étaient déjà utilisés pour désigner des techniques de calcul[34]. On peut même citer deux contemporains d'Al-Khwârizmî écrivant parallèlement sur le même sujet (Ibn Turk et Abu Bakr[35]). Les mathématiques grecques avaient déjà résolu des problèmes du second degré à l'aide de manipulations géométriques. Enfin, Diophante, dont les Arithmétiques n'étaient pas connues d'Al-Khwârizmî[36], étudie de nombreux problèmes comportant plusieurs inconnues et leur carré ou leur cube et met en place une rédaction syncopée mélangeant rhétorique et un embryon d'écriture symbolique[37]. Le mérite d'al-Khwarizmi est d'avoir su présenter l'ensemble dans un tout cohérent et exhaustif, alliant technique et démonstration[38]. L'exposé d'une théorie des équations avec un nom, des objets, des outils, des preuves et des applications en fait une discipline à part entière[39]. Le lieu de naissance de l'algèbre est un sujet controversé[40] mais l'œuvre d'al-Khwarizmi contribue à en faire une discipline propre exploitable propice à son épanouissement[41].

Le travail d'al-Khwarizmi est développé par ses successeurs&#;: Thābit ibn Qurra travaille sur la traduction géométrique des équations, Abu Kamil en augmente le degré et prend ses coefficients dans les nombres irrationnels[42]. Lorsqu'en , Qusta ibn Luqa traduit les Arithmétiques de Diophante, c'est le vocabulaire mis en place par al-Khwarizmi qu'il emploie[6].

Équation de degré trois[modifier | modifier le code]

&#;Article détaillé&#;: équation cubique.

Le nouvel outil est mis au service de la résolution de problèmes classiques de l'antiquité comme la duplication du cube, la trisection de l'angle, la construction de l'heptagone régulier et le découpage de la sphère selon une proportion donnée. Ces problèmes se ramènent à une équation de degré trois. Les mathématiciens arabes recherchent des méthodes générales de résolution par radicaux, mais c'est un échec[43].

Une autre voie est également explorée, plus fructueuse&#;: la résolution des équations de manière approchée comme intersection de deux coniques. La méthode était déjà employée pour certaines équations par Apollonius dans ses Coniques[44]. Cette voie est étudiée par de nombreux mathématiciens arabes parmi lesquels al-Khazin, al-Quhi, Abu al-Jud Ibn al-Laith, al-Shanni, al-Biruni etc. L'apport décisif est celui d'al-Khayyam, qui en fait une étude systématique, classant les équations selon le signe de leurs coefficients, exhibant une solution positive, si elle existe, comme intersection de deux coniques et recherchant une valeur approchée de celle-ci[45]. Son travail est approfondi par Sharaf al-Dīn al-Tūsī, qui démontre que les solutions peuvent être obtenues comme intersection de deux coniques prises parmi parabole, hyperbole équilatère et cercle. Al-Tusi s'affranchit des contraintes d'homogénéité, s'intéresse également au nombre de solutions positives, ramène l'équation à la forme f(x) = c et discute du nombre de solutions selon la valeur du maximum pris par la fonction. Pour déterminer le maximum, il utilise la dérivée formelle du polynôme f sans cependant expliquer ce qui l'a conduit à inventer cette dérivation. Il utilise également cette dérivée formelle et des changements de variable affines dans le calcul d'une valeur approchée de la solution[46].

«&#;Algèbre&#;» des polynômes[modifier | modifier le code]

Un siècle et demi après al-Khwarizmi, al-Karaji entreprend d'appliquer les techniques de calcul du système décimal aux polynômes[47], plus exactement aux expressions que l'on écrit aujourd'hui sous la forme: par analogie avec l'écriture des nombres décimaux: Selon son successeur al-Samaw'al, il aurait démontré la formule du binôme jusqu'à la puissance 12 et indiqué que la formule pouvait se prolonger indéfiniment avec la règle de constitution des coefficients qui porte aujourd'hui le nom de formule du triangle de Pascal[48]. C'est un des premiers exemples de démonstration utilisant une sorte d'induction de type fini[49].

Son travail est poursuivi et approfondi par al-Samaw'al qui donne les règles de calcul sur les monômes, les règles de divisibilité d'un polynôme par un autre et présente des techniques d'approximations d'un quotient de deux polynômes ou d'une racine carrée d'un polynôme en utilisant les exposants négatifs[49]. Il présente également les polynômes sous la forme synthétique d'un tableau contenant les coefficients des monômes rangés suivant leurs puissances décroissantes[50]. Il pose en outre une réflexion sur les exposants fractionnaires et en présente des règles de calcul[49].

En Occident arabe, la perte de manuscrits ne permet pas de définir avec précision les apports de chacun mais on sait que cette branche de l'algèbre était enseignée dans les universités andalouses encore au XIVe&#;siècle[51]. C'est aussi dans l'Occident arabe, au Maghreb plus précisément, que l'on trouve trace au XIVe&#;siècle (chez Ibn Qunfudh, Al-Qalasadi et Ibn Ghazi al-Miknasi&#;(en)), et même dès le XIIe&#;siècle[52], d'un symbolisme algébrique touchant tant le calcul que les polynômes et les équations, symbolisme qui semble apparaitre sous cette forme élaborée pour la première fois et serait une originalité des mathématiques de cette région[53].

Analyse indéterminée[modifier | modifier le code]

L'algèbre est également mise au service de l'analyse indéterminée rationnelle, appelée aussi analyse diophantienne rationnelle. Celle-ci consiste à trouver, si elles existent, les solutions rationnelles à un problème comportant plus d'inconnues que d'équations. L'étude de ce type de problème intervient très tôt dans les mathématiques arabes&#;: avant Abu Kamil qui est, semble-t-il, le premier à distinguer entre problème déterminé et problème indéterminé et avant la traduction des Arithmétiques de Diophante par Qusta Ibn Luqa[54]. Abu Kamil s'intéresse principalement aux problèmes du second degré et aux systèmes linéaires[55]. Il résout par exemple l'équation ax – x² + b = y² par changement de variable affine à coefficients rationnels et en précise les conditions d'existence[56]. Dans le cadre des systèmes d'équations, il utilise le principe d'élimination par substitution[57]. La traduction du traité de Diophante donne une forte impulsion à ce type de recherche, qui prend le nom de al-istriqa[58]. Al-Karaji consacre à ce sujet un traité aujourd'hui perdu, mais dont on trouve la trace dans deux autres de ses traités al-Badi et al-Fakhri. Il reprend et approfondit les problèmes présentés par Abu Kamil et par les livres II, III et IV des Arithmétiques pour en faire une étude systématique[59]. Son travail est prolongé par ses successeurs al-Samaw'al, al-Zanjani, Ibn al-Khawwam et Kamāl al-Dīn al-Fārisī et l'analyse indéterminée devient un chapitre intégré dans tout traité sur l'algèbre[60].

Analyse numérique[modifier | modifier le code]

Pour résoudre numériquement des équations, les mathématiciens arabes mettent en place des méthodes dont certaines sont issues des mathématiques grecques ou indiennes comme l'extraction de la racine carrée ou de la racine cubique. Le principe consiste à déterminer successivement les chiffres d'une solution en utilisant la propriété suivante&#;: si X est une valeur approchée d'une solution de l'équation f(x) = N et si on pose x = X + y et g(y) = f(X+y) – f(X) alors x est une solution de f(x) = N si et seulement si y est solution de g(y) = N – f(X).

Ainsi, pour trouver la solution positive de l'équation f(x) = N où f(x) = x3 + 6x et N = 5&#;&#;, on cherche le plus grand entier a tel que f(a) ≤ N, on trouve a = 1 qui donne le chiffre des centaines de la solution. On pose alors g(y) = f(+y) – f() et N1 = N – f() pour résoudre l'équation g(y) = N1. On cherche le plus grand entier b tel que g(10b) ≤ N1, on trouve b = 7 qui est le chiffre des dizaines de la solution. On pose enfin h(z) = g(70+z) – g(70) et N2 = N1 – g(70) pour résoudre l'équation h(z) = N2. On cherche le plus grand entier c tel que h(c) ≤ N2, on trouve c = 3 qui est le chiffre des unités de la solution. Comme h(3) = N2, on sait que est la solution exacte de l'équation.

Cette méthode est utilisée au Xe&#;siècle par Kushyar Ibn Labbān&#;(en) et Ibn al-Hayttam pour l'extraction de la racine carrée et de la racine cubique[61] puis au XIIe&#;siècle pour la racine n-ième. Pour calculer g(y), les mathématiciens arabes avaient à leur disposition la formule du binôme mais il est aussi possible d'utiliser des techniques analogues à la méthode de Ruffini-Horner, comme le fait Sharaf al-Din al-Tusi dans la résolution numérique de l'équation de degré 3[62].

Lorsque la racine n'est pas entière, une approximation traditionnelle est donnée mais le développement de la théorie des fractions décimales par al-Karaji et al-Samaw'al au XIIe&#;siècle permet de trouver alors des approximations décimales aussi fines que l'on veut de la racine irrationnelle[63].

Une autre méthode utilisant la propriété du point fixe attractif est employée tardivement au XVe&#;siècle chez al-Kashi[64] et au XVIIIe&#;siècle par Mirza al-Isfahani[65]. En mettant l'équation sous la forme x = f(x), les approximations successives de la solution sont les éléments de la suite définie par&#;: x0 est une première approximation et xn+1 = f(xn).

Le désir d'améliorer la précision des tables trigonométriques pousse les mathématiciens arabes à affiner les méthodes d'interpolation. L'interpolation affine était déjà connue des Grecs et la traduction du Khandakhadyaka de Brahmagupta les familiarise avec l'interpolation quadratique[66]. Une réflexion est menée pour déterminer la meilleure interpolation à utiliser, exploitant les moyennes pondérées et la vitesse de variation des différences[67], et faisant éventuellement appel à d'autres fonctions que les fonctions du premier et du second degré[68].

Combinatoire[modifier | modifier le code]

Il existe assez tôt une préoccupation pour dénombrer de manière organisée certaines configurations comme l'expression de la formule de la figure sécante par Thābit ibn Qurra[69] ou dans des problèmes d'algèbre. Le nombre de cas alors ne nécessite pas la mise en place de formules[70]. Les questions de dénombrement naissent réellement dans le domaine de la linguistique où se posent, dès le VIIIe&#;siècle avec Khalil Ibn Ahmad, des questions comme «&#;Combien de mots de 5 lettres peut-on former&#;?&#;» et ces études servent aux lexicographes et cryptographes[71].

Au XIIIe&#;siècle les formules de dénombrement sont travaillées par Nasir ad-Din al-Tusi[71] et par Ahmad Ibn Mun'im qui, dans son Fiqh al-Hisab (La science du calcul)[72], établit les formules suivantes[73]: Nombre de permutations de n éléments&#;: ;Nombre de mots de n lettres dont une est répétée k fois&#;: ;Nombre de mots de n lettres dont la ième est répété ki fois&#;: . Le nombre de combinaisons est étudié, ce qui donne lieu à la réapparition du triangle de Pascal non plus associé à la formule du binôme mais au dénombrement. Ce travail est poursuivi à la fin du XIIIe&#;siècle et au début du XIVe&#;siècle. Kamāl al-Dīn al-Fārisī utilise le triangle de Pascal pour calculer les nombres figurés établissant la formule[74]: nième nombre figuré d'ordre r&#;: Ibn al-Banna établit l'égalité[73]&#;: Nombre de combinaisons de p éléments pris parmi n&#;: L'analyse combinatoire devient un chapitre d'ouvrages mathématiques comme chez al-Kashi ou fait l'objet, tardivement, de traités indépendants comme chez Ibrahim al-Halabi[75],[76].

Théorie des nombres[modifier | modifier le code]

Il existe dans les mathématiques arabes une longue tradition d'étude en théorie des nombres, inspirée par les écrits d'Euclide, de Diophante et de Nicomaque de Gérase.

Sur les nombres parfaits, Ibn Tahir al-Baghdadi énonce une méthode alternative de génération des nombres parfaits d'Euclide à l'aide d'une série arithmétique[77]. Le cas des nombres parfaits impairs est évoqué et la recherche d'une réciproque est entreprise. Ibn al-Haytham propose ainsi une réciproque partielle[78] sur les nombres de la forme 2p(2q-1). Les mathématiciens arabes s'intéressent à leur répartition, vont jusqu'au 7e&#;nombre parfait tout en introduisant cependant des nombres parasites[79] et invalident l'affirmation de Nicomaque de Gérase[80] qui en imagine un dans chaque puissance de

L'étude des nombres amiables traverse l'histoire des mathématiques arabes et conduit au développement des connaissances sur la décomposition en facteurs premiers et sur les fonctions somme des diviseurs et nombre de diviseurs. Thabit ibn Qurra démontre son théorème&#;: si A (= n – 1), B (= n–1 – 1) et C (= 2n – 1 – 1) sont premiers alors 2nAB et 2nC sont amiables. Outre le couple (, ), les mathématiciens arabes exhibent les couples (17&#;, 18&#;) et (9&#;&#;, 9&#;&#;)[81].

Le travail d'Ibn al-Haytham sur le problème des restes chinois le conduit à énoncer le théorème de Wilson sur la caractérisation des nombres premiers[82].

En analyse indéterminée entière, les triplets pythagoriciens sont étudiés[83] et généralisés aux dimensions supérieures&#;: al-Sijzi démontre que, pour tout n, il existe un carré somme de n carrés[84]. Sont également étudiées les équations de la forme x² ± a = y²[85]. Sur le problème de Fermat

Une page du traité d'al-Khwarizmi, Kitab al jabr wa'l muqabala.
Érudits dans une bibliothèque abbasside (illustration de Yahya ibn Vaseti dans le Maqama of Hariri).
Généalogie de la numération indienne.
Multiplication arabe sur tablette de sable. La multiplication s'effectue par les poids forts et les résultats intermédiaires sont effacés.

Version arabe.

Version anglaise (traduction de Fredrick Rosen).

Pages du traité d'al-Khwarizmi.

Résolution de l'équation x3 + ax = b selon la méthode d'Omar Khayyam. AB2 = a, AC × AB2 = b, ABmn est un carré. Le demi-cercle de diamètre [AC] rencontre la parabole, de sommet A, d'axe (AB) perpendiculaire à (AC) et passant par m, en D. Le point D se projette orthogonalement sur [AC] en E. La distance AE est solution de l'équation.

  • Ares site officiel
  • Landon anna todd en pdf saison 1 episodes 2
  • Site de graytuit
  • Instant star saison 2 episode 7
  • Battle for middle earth collection collection
  • Liste pads pcb files